Precision:
True positives True positives
------------------------ = ---------------------------------------
#predicted positives True positives + False positives
Recall:
True positives True positives
------------------------ = ---------------------------------------
#actual positives True positives + False negative
There is a tradeoff between precision and recall.
One way to compute the precision and recall is using F_1 score
precision * recall
F_1 score = 2 * -----------------------
precision + recall
Reference: https://www.coursera.org/learn/machine-learning/lecture/tKMWX/error-metrics-for-skewed-classes
No comments:
Post a Comment